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Abstract
The single-site two-electron exchange amplitude Jsd between the Cu 4s and
Cu 3dx2−y2 states is found to be the pairing mechanism of high-Tc overdoped
cuprates. The noninteracting part of the Hamiltonian spans the copper Cu 4s,
Cu 3dx2−y2 and oxygen O 2px and O 2py states. Within the standard BCS
treatment an explicit expression for the momentum dependence of the gap �p

is derived and shown to fit the angle-resolved photoemission spectroscopy data.
The basic thermodynamic and electrodynamic properties of the model (specific
heat C(T ) and London penetration depth λ(T )) are analytically derived. These
are directly applicable to cuprates without complicating structural accessories
(chains, double CuO2 planes etc). We advocate that the pairing mechanism of
overdoped and underdoped cuprates is the same, as Tc displays smooth doping
dependence. Thus, a long-standing puzzle in physics is possibly solved.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of high-temperature superconductivity [1] in cuprates and the subsequent
‘research rush’ have led to the appearance of about 100 000 papers to date [2]. Virtually
every fundamental process known in condensed matter physics was probed as a possible
mechanism of this phenomenon. Nevertheless, none of the theoretical efforts resulted in a
coherent picture [2]. For the conventional superconductors the mechanism was known to
be the interaction between electrons and crystal-lattice vibrations, but the development of its
theory lagged behind the experimental findings. The case of cuprate high-Tc superconductivity
appears to be the opposite: we do not convincingly know which mechanism is to be incorporated
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Figure 1. (a) Ball-and-stick model of the CuO2 plane. The shaded square is the unit cell indexed
by n = (nx , ny ), nx,y = 0,±1,±2, . . .. (b) The LCAO basis set: a single electron hops from
the 3d atomic orbital to 2px with amplitude tpd, contained in ĤBH. From 2px to 2py the hopping
amplitude is tpp, and from there to 4s the hopping amplitude is tsp. Correlated hopping of two
electrons in opposite directions between 3d and 4s with amplitude Jsd is depicted as a double arrow
(see the discussion in sections 4 and 5).

in the traditional Bardeen–Cooper–Schrieffer (BCS) theory [3]. Thus the path to high-Tc

superconductivity in cuprates, perhaps carefully hidden or well forgotten, has turned into one
of the long-standing mysteries in physical science.

Features of the electronic spectrum of the CuO2 plane, figure 1(a), the structural detail
responsible for the superconductivity of the cuprates, have become accessible from the angle-
resolved photoemission spectroscopy (ARPES) [4, 5]. Thus, any theory which pretends to
explain the cuprate superconductivity is bound to include these features and account for them
consistently. A number of extensive reviews over the past years have been devoted to that
theoretical problem [6–15]. For further related discussion we also refer the reader to the
review [16] on NMR–NQR spectroscopies in high-Tc superconductors.

In contrast with all previous proposals, we have advanced in [17] the intra-atomic
exchange [18] of two electrons between the 4s and 3dx2−y2 states of the Cu atom as the origin of
high-Tc superconductivity in the layered cuprates and have shown that the basic spectroscopic
and thermodynamic experiments can be explained by it. Previously only inter-atomic Heitler–
London (HL) type [19] two-electron exchange [20–22] has been discussed. Thus, the present
work is the unabridged version of our theory announced in [17]. It builds upon the standard
Bloch–Hückel (BH) [23–26] (tight-binding) approximation to the electronic band structure of
the CuO2 plane, developed in an earlier work [27]. We derive an analytical expression for the
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BCS kernel, or pairing potential Vpp′ . For the case of the s–d pairing the analytical solution is
compared to the ARPES data. Extensive discussion is also provided to help the juxtaposition
of our theory with other models. Finally, exact expressions within the s–d model are given for
the specific heat, London penetration depth, Cooper-pair effective mass and Hall constant of
the vortex-free Meissner–Ochsenfeld phase.

2. Lattice Hamiltonian

The electronic properties of materials are strongly influenced by the local environment and
in this sense the electronic features are local physics. The simplest possible model for high-
Tc superconductivity contains single-particle and correlated two-electron hoppings between
nearest neighbours and next-nearest neighbours. Formally, this is an expansion of the
many-particle Hamiltonian containing two- and four-fermion operators. The two-fermion
Hamiltonian determines the band structure, briefly considered in section 2.1, while the four-
fermion terms (section 2.2) determine the pairing interaction, and lead to the gap equations
considered in section 3.

2.1. The four-band model in a nutshell

Every high-Tc superconductor has its specific properties. It is strongly believed, however, that
the main features of the electronic band structure of the CuO2 plane are adequately described
by the four-band model spanning the Cu 3dx2−y2 , Cu 4s, O 2px and O 2py orbitals, figure 1(b).
In the spirit of the BH model, using Jordan’s second quantization language, we introduce Fermi
annihilation operators for an electron with spin projection α at a particular orbital, respectively,
D̂nα, Ŝnα, X̂nα and Ŷnα in the unit cell with index n = (nx , ny). It is convenient to introduce
a multicomponent Fermi creation operator in momentum space, �̂†

pα = (D̂†
pα, Ŝ†

pα, X̂†
pα, Ŷ †

pα).
In this notation the one-electron BH Hamiltonian reads

Ĥ′
BH = ĤBH − µN̂ =

∑
p,α

�̂†
pα(HBH − µ1I4×4)�̂pα, (2.1)

where µ is the chemical potential, and (cf [27])

HBH =



εd 0 tpdsx −tpdsy

0 εs tspsx tspsy

tpdsx tspsx εp −tppsx sy

−tpdsy tspsy −tppsx sy εp


 ; (2.2)

εd, εs and εp are the single-site energies of the Cu 3dx2−y2 , Cu 4s, O 2px and O 2py states,
respectively. The hopping amplitudes between these states are tsp, tpd and tpp, figure 1(b).
Note that because of the orbital orthogonality tsd = 0. For brevity, we have also introduced
the notation

sx = 2 sin(px/2), sy = 2 sin(py/2), s = (sx , sy),

x = sin2(px/2), y = sin2(py/2).
(2.3)

From a classical point of view, the Cu 3dx2−y2 state corresponds to a circular electron
rotation in the CuO2 plane while the Cu 4s state corresponds to a classical ensemble of electrons
of zero angular momentum continuously falling to the nucleus. Pictorially, the s electrons fall
to the nuclei like comets, but after the impact the turning point of their motion is very far from
the nucleus. This is the reason why tsp is considerably larger than tpd. The transfer amplitude
tpp is the smallest one since the hopping to the next-nearest neighbour requires a tunnelling
through free space. As a rule, the electron band calculations significantly overestimate tpp, but
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the latter can be reliably calculated using the surface integral method, cf [27]. Even for the
largest transfer integrals tsp and tpd, which determine the bandwidth of the conduction band,
the ab initio calculations give a factor of two or even three ‘overbinding’. Nonetheless, the
band calculations substantiate this choice for the LCAO (linear combination of atomic orbitals)
basis set and provide an adequate language for interpretation. In the end, these parameters
should be determined by fitting to the spectroscopy data and be treated in the model lattice
Hamiltonian as phenomenological parameters of the microscopic many-body theory. We shall
briefly recall some basic properties of the four-band model as derived in [27].

Let εb,p and �b,p be the eigenvalues and the corresponding eigenvectors of the BH
Hamiltonian, HBH�b,p = εb,p�b,p, where b = 1, . . . , 4 is the band index. For the ‘standard
model’, εp < εd < εs, the lowest energy band, b = 1, is an oxygen bonding band having a
minimum at the (π, π) point. The next band, b = 2, is a narrow ‘nonbonding’ oxygen band
with an exactly (within the framework of the model) zero dispersion along the (0, 0)–(π, 0)

direction, i.e., this band is characterized by an extended Van Hove singularity. The conduction
band, b = 3, is a nearly half-filled Cu 3dx2−y2 band with the analytical eigenvector

�̃3,p =



D3,p

S3,p

X3,p

Y3,p


 =




−εsε
2
p + 4εpt2

sp(x + y) − 32tppτ
2
spxy

−4εptsptpd(x − y)

−(εsεp − 8τ 2
spy)tpdsx

(εsεp − 8τ 2
spx)tpdsy


 , (2.4)

where the ε denote the energies measured relative to their respective atomic levels: εs = ε−εs,
εp = ε − εp, εd = ε − εd and τ 2

sp = t2
sp − εstpp/2. The topmost band, b = 4, is an empty Cu 4s

band. In elementary metals like Cu and Fe, the 4s band is a wide conduction band, but for the
CuO2 plane it is completely ‘oxidized’. Having the analytical eigenvector we can calculate
the corresponding eigenvalue:

ε3,p = 〈�̃3,p|HBH|�̃3,p〉
〈�̃3,p|�̃3,p〉

. (2.5)

If necessary, the nonorthogonality of the atomic orbitals at neighbouring atoms can be easily
taken into account. In this case the normalizing denominator in the above equation reads (for
arbitrary band index)

〈�̃p|�̃p〉 = D2
p + S2

p + X2
p + Y 2

p + 2gpdsx Dp Xp − 2gpdsy DpYp

+ 2gspsx Sp Xp + 2gspsy SpYp − 2gppsx sy XpYp, (2.6)

where the ‘metric tensor’ gi j is given by the integral

gi j =
∫

ψ∗
i (r)ψ j(r − R) dr, (2.7)

where ψ∗
i (r) and ψ j (r −R) are the atomic wavefunctions, and R is the inter-atomic distance.

The phases are chosen such that all overlap integrals gpd, gsp and gpp are positive parameters,
like the hopping integrals tpd, tsp and tpp. Note that these provisions apply only to the single-
particle spectrum. As long as one deals with a single conduction band, all Bloch states are
orthogonal and the further treatment of the second-quantized Hamiltonian proceeds in the
standard way.

Thus, using the Rayleigh quotient iteration for equations (2.2)–(2.5) one can obtain
numerically the eigenvalue and the eigenvector. The band energies ε ≡ εb,p satisfy the secular
equation

det(HBH − ε1I4×4) = Axy + B(x + y) + C = 0, (2.8)
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where the energy-dependent coefficients read [27]

A(ε) = 16(4t2
pdt2

sp + 2t2
sptppεd − 2t2

pdtppεs − t2
ppεdεs),

B(ε) = −4εp(t
2
spεd + t2

pdεs),

C(ε) = εdεsε
2
p.

(2.9)

Furthermore, we introduce the normalized eigenvector �b,p = �̃b,p/‖�̃b,p‖ and write the
noninteracting Hamiltonian in diagonal form,

Ĥ′
BH =

∑
b,p,α

(εb,p − µ)ĉ†
b,pα ĉb,pα. (2.10)

The Fermi operators in real-space representation can be easily expressed using the band
representation,

�̂nα ≡



D̂nα

Ŝnα

X̂nα

Ŷnα


 = 1√

N

∑
b,p

eip·n




Db,p

Sb,p

eiϕx Xb,p

eiϕy Yb,p


 ĉb,pα, (2.11)

where N is the number of unit cells, and the two phases in the right-hand side of the equation
read ϕx = 1

2 (px − π) and ϕy = 1
2 (py − π). This transformation will be used in the next

subsection for deriving the interaction Hamiltonian.

2.2. The Heitler–London and Schubin–Wonsowsky–Zener interaction

The HL interaction Hamiltonian describes the (intra- and inter-atomic) two-electron exchange.
It comprises four parts [20, 21] corresponding to Cu 4s ↔ O 2pσ , O 2pσ ↔ Cu 3dx2−y2 ,
O 2px ↔ O 2py and Cu 3dx2−y2 ↔ Cu 4s exchanges with transition amplitudes Jsp, Jpd, Jpp

and Jsd, respectively:

ĤHL = −Jsd

∑
n,αβ

Ŝ†
nα D̂†

nβ Ŝnβ D̂nα − Jsp

∑
n,αβ

[Ŝ†
nα X̂†

nβ Ŝnβ X̂nα + Ŝ†
nαŶ †

nβ Ŝnβ Ŷnα

+ Ŝ†
(nx +1,ny)α

X̂†
nβ Ŝ(nx +1,ny)β X̂nα + Ŝ†

(nx ,ny+1)αŶ †
nβ Ŝ(nx ,ny+1)β Ŷnα]

− Jpd

∑
n,αβ

[D̂†
nα X̂†

nβ D̂nβ X̂nα + D̂†
nαŶ †

nβ D̂nβ Ŷnα

+ D̂†
(nx +1,ny)α

X̂†
nβ D̂(nx +1,ny)β X̂nα + D̂†

(nx ,ny+1)αŶ †
nβ D̂(nx ,ny+1)β Ŷnα]

− Jpp

∑
n,αβ

[X̂†
nαŶ †

nβ X̂nβ Ŷnα + X̂†
nαŶ †

(nx +1,ny)β
X̂nβ Ŷ(nx +1,ny)α

+ X̂†
(nx ,ny+1)αŶ †

nβ X̂(nx ,ny+1)β Ŷnα + X̂†
(nx ,ny+1)αŶ †

(nx +1,ny )β
X̂(nx ,ny+1)β Ŷ(nx +1,ny)α].

(2.12)

Let us now analyse the structure of the total electron Hamiltonian Ĥ′ = Ĥ′
BH + ĤHL. In terms

of the Fermi operators �̂iα , corresponding to the atomic orbitals, Ĥ′ reads

Ĥ′ =
∑
i,α

(εi − µ)�̂
†
iα�̂iα −

∑
i< j,α

(t̃ j i�̂
†
jα�̂iα + t̃∗

j i�̂
†
iα�̂ jα) −

∑
i< j,αβ

Ji j�̂
†
iβ�̂

†
jα�̂iα�̂ jβ,

(2.13)

where t̃ j i = t j i eiφ j i , t j i = ti j and φ j i = φ j − φi is the phase difference between the i th and
j th atomic orbitals in the overlapping domain. Roughly speaking, onto every single-electron
hopping amplitude ti j one can map a corresponding two-electron hopping amplitude Ji j . The
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case of a strong electron correlation implies that Ji j could be of the order of ti j . Thus, one can
expect that the following inequalities hold true: Jpp < Jpd < Jsp < Jsd.

In fact, the s–d exchange is the basic process responsible for the magnetism of transition
metals; see for example [18]. It has been understood since the dawn of quantum physics that
the mechanism of ferromagnetism [28] is the two-electron exchange owing to the electron
correlations [29].

Here we shall add a few words in retrospect concerning the two-electron correlation
parametrized by Ji j in (2.13). Probably the first two-electron problem was Bohr’s consideration
of the He atom [30] (cf [31, 32]) in which two electrons have opposite coordinatesr2 = −r1 and
momenta p2 = −p1. For a purely radial motion, such a fall to the nucleus is stable and many
years after Bohr’s prediction double Rydberg states, with an effective Ryeff = (2 − 1/4)Ry,
were discovered by electron energy loss spectroscopy [33]. These double Rydberg states with
opposite electron momenta can be considered as proto-forms of the Cooper pairs. Interestingly,
in 1914, Sir J J Thomson proposed [34] (cf also the textbook [35]) that electric charge can
propagate as electron doublets—another proto-form of the local (Ogg–Schafroth) pairs [36, 37].
Before the appearance of quantum mechanics, Lewis [38] and Langmuir [39] introduced the
idea of electron doublets in order to explain the nature of the chemical bond. At nearly the
same time Parson [40] came to the conclusion that ‘an electron is not merely an electron charge
but a small magnet’ or in his terminology ‘a magneton’, cf [38]. Later, in 1926, Lewis also
introduced the notion of a photon [41], without any reliable theoretical background at the time.

In the era of new quantum mechanics Heitler and London [19] realized the idea of electron
doublets [42] and convincingly demonstrated how the two-particle correlation owing to a strong
Coulomb repulsion can lead to a decrease of the energy, and, by virtue of the Hellmann–
Feynman theorem, to inter-atomic attraction for the singlet state of the electron doublet. The
original HL calculation, which is nowadays interpreted in every textbook in quantum mechanics
and/or quantum chemistry, indeed gives a wrong sign of the exchange energy for very large
inter-atomic distances but, in principle, there are no conceptual difficulties in the HL theory.
The exchange energy J was represented [43] as a surface integral in the two-electron six-
dimensional space (r1, r2) and this was shown to be an asymptotically exact result, cf also [44].
The surface integral method gives amazingly accurate results (cf the excellent monograph by
Patil and Tang [45]) even if the exchange energy is of the order of the energies typical for solid
state phenomena. Unfortunately, this method, that ought to be applied to ab initio calculated
(e.g., from density functional theory (DFT) [46]) wavefunctions, is barely known in the solid
state community (although a very recent work by Gor’kov and Krotkov [47] indicates that it
is not completely forgotten).

This is one of the reasons why the t and J transfer integrals have been treated
phenomenologically just as fitting parameters of the theory. A valuable discussion on a similar
scope of ideas has recently been given by Brovetto et al [48] but it may well not be the only
case. In order to ease comparison of the HL Hamiltonian with the other types discussed in the
search for a theory of high-Tc superconductivity we shall rewrite it in terms of spin variables.

The grounds for our theory were first set by Schubin and Wonsowsky and later in clearer
notions and notation by Zener [18]. The s–d two-electron exchange is the intra-atomic version
of the HL interaction. Both of those four-fermion interactions due to HL and Schubin–
Wonsowsky–Zener can in principle mediate superconductivity and magnetism.

2.2.1. Spin variables. Let us introduce the spin operator Ŝi and particle number operator n̂i

for each atomic orbital,

Ŝi = �̂
†
i

σ

2
�̂i , n̂i = �̂

†
i σ0�̂i , �̂

†
i = (�̂

†
i↑, �̂

†
i↓), (2.14)
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where σ0 = 1I2×2 and σ are the Pauli sigma matrices, and the first two formulae imply
summation over the spin indices. Also introducing the spin exchange operator P̂i j ,

P�̂iα�̂ jβ = �̂iβ�̂ jα, P̂i j =
∑
αβ

(�̂iα�̂ jβ)† P�̂iα�̂ jβ, (2.15)

we can rewrite the HL Hamiltonian per bond as [49–51]

−J
∑
αβ

�̂
†
iβ�̂

†
jα�̂iα�̂ jβ = J P̂i j = 2J (Ŝi · Ŝ j + 1

4 n̂i n̂ j ). (2.16)

We should stress that in the t–J model the term ∝ n̂i n̂ j enters with negative sign [52, 53]. Let
us also provide the ‘mixed’ representation:

2Ŝi · Ŝ j = Ŝi,x (�̂
†
j↑�̂ j↓ + �̂

†
j↓�̂ j↑) + Ŝi,y(−i�̂†

j↑�̂ j↓ + i�̂†
j↓�̂ j↑) + Ŝi,z(n̂ j↑ − n̂ j↓)

= Ŝi,+�̂
†
j↓�̂ j↑ + Ŝi,−�̂

†
j↑�̂ j↓ + Ŝi,z(n̂ j↑ − n̂ j↓), (2.17)

where n̂ j↑ ≡ �̂
†
j↑�̂ j↑, and Ŝi,+ = �̂

†
i↑�̂i↓ = Ŝ†

i,−. Note that (2.16) implies a purely orbital
motion without spin flip: two electrons exchange their orbitals and only the spin indices reflect
this correlated hopping. For J > 0, the HL Hamiltonian has a singlet ground state

|S〉 = 1√
2
(�̂

†
i↑�̂

†
j↓ − �̂

†
i↓�̂

†
j↑)|vac〉, �̂iα|vac〉 = 0, 〈vac|vac〉 = 1, (2.18)

with eigenvalue −J . The lowering in energy of the singlet state, having a symmetric orbital
wavefunction, is of purely kinetic origin related to the delocalization of the particles at different
orbitals. Symbolically, the ‘location’ of the (approximately) localized electron doublet(s) in
the structure signature of a molecule is designated by a colon, e.g., H:H for the H2 molecule.
This Lewis notation for the valence bond with energy −J (or four-fermion terms in the second-
quantization language) is an important ingredient of the chemical intuition. In principle, such
an exchange lowering is expected to exist for Bose particles as well. For electrons, however,
we have triplet excited states

|T + 1〉 = �̂
†
i↑�̂

†
j↑|vac〉,

|T0〉 = 1√
2
(�̂

†
i↑�̂

†
j↓ + �̂

†
i↓�̂

†
j↑)|vac〉,

|T − 1〉 = �̂
†
i↓�̂

†
j↓|vac〉,

(2.19)

with eigenvalue J . In the present work we consider the parameter J to be positive if it
corresponds to antiferromagnetism, or pairing in the singlet channel. Thus the singlet–triplet
splitting for the single-bond HL Hamiltonian (2.16) is 2J . Similarly, the bonding–antibonding
splitting for the single-particle hopping Hamiltonian −t

∑
α(�̂

†
jα�̂iα + �̂

†
iα�̂ jα) is 2t, and the

energy threshold for creation of a pair of normal carriers, considered in the next section, is
2�. Besides stemming from bare inter- and intra-atomic processes, two-electron hopping
amplitudes J can be created by strong correlations within the Hubbard model. For a nice
review on this subject the reader is referred to the article by Spalek and Honig [53].

3. Reduced Hamiltonian and the BCS gap equation

Substituting the Fermi operators �̂nα, equation (2.11), into (2.12) one obtains the HL
interaction Hamiltonian in a diagonal band representation. For the case of zero electric
current [54], solely the reduced Hamiltonian ĤHL−R, including only creation and annihilation
operators with opposite momenta, has to be taken into account:

ĤHL−R = 1

2N

∑
b,p

∑
b′,p′

∑
αβ

ĉ†
b,pβ ĉ†

b,−pαVb,p;b′,p′ ĉb′,−p′α ĉb′,p′β. (3.1)
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For singlet superconductors it is necessary to take into account the pairing with opposite spins;
thereby, the total reduced Hamiltonian reads

Ĥ′
R =

∑
b,p,α

ηb,pĉ†
b,pα ĉb,pα +

1

N

∑
b,p

∑
b′,p′

Vb,p;b′,p′ ĉ†
b,p↑ĉ†

b,−p↓ĉb′,−p′↓ĉb′,p′↑, (3.2)

where ηb,p ≡ εb,p −µ are the band energies measured from the chemical potential [54]. Hence
the BCS equation [3] for the superconducting gap takes the familiar form

�b,p = 1

N

∑
b′,p′

(−Vb,p;b′,p′)
1 − 2nb′,p′

2Eb′,p′
�b′,p′ , (3.3)

where Eb,p = (η2
b,p + |�b,p|2)1/2 are the quasiparticle energies and nb,p = [exp(Eb,p/kBT ) +

1]−1 are the Fermi filling factors with kB the Boltzmann constant, and T the temperature.
The summation over the band index b′ should be restricted to the partially filled (metallic)
bands, comprising sheets of the Fermi surface. Applying this standard procedure to the HL
Hamiltonian (2.12), and after some algebra, we obtain the desired BCS pairing kernel,

Vb,p;b′,p′ = −2Jsd SpSp′ Dp Dp′ − Jppγx XpXp′γyYpYp′

+ 2(JspSpSp′ + Jpd Dp Dp′)(γx Xp Xp′ + γyYpYp′), (3.4)

where

γx = 4 cos

(
px + p′

x

2

)
, γy = 4 cos

(
py + p′

y

2

)
. (3.5)

As the band indices b and b′ enter implicitly in the band energies εb,p in the equation for the
eigenvectors�p(εb,p), we will suppress them hereafter. The layered cuprates, admittedly, have
a single conduction band and their Fermi surface has the shape of a rounded square. In this
simplest case one has to solve numerically the nonlinear integral equation

�p =
∫ π

−π

dqx

2π

π∫
−π

dqy

2π
(−Vpq)

�q

2Eq

tanh

(
Eq

2kBT

)
. (3.6)

The solution to this general gap equation, depending on the Ji j values, can exhibit s-, p- or d-
type symmetry. It has been shown previously that a purely p–p model [21, 55] (Jpp > 0) results
in a dxy (B2g) gap anisotropy. However, we found that an agreement with the experimentally
observed dx2−y2 (B1g) gap anisotropy (for a review see for example [56]) can be achieved only
in the simplest possible case of a dominant s–d exchange. This separable Hamiltonian deserves
special attention and we will analyse it in the next sections.

4. Separable s–d model

For the special case of a purely s–d model, Jsp = Jpd = Jpp = 0, representing the spin
exchange operator P̂ as a (4 × 4) matrix, cf equations (2.15) and (2.16), the reduced pairing
Hamiltonian takes the form

ĤHL−R = Jsd

N

∑
p,q




Ŝ−p↑ D̂p↑
Ŝ−p↑ D̂p↓
Ŝ−p↓ D̂p↑
Ŝ−p↓ D̂p↓




† 


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







Ŝ−q↑ D̂q↑
Ŝ−q↑ D̂q↓
Ŝ−q↓ D̂q↑
Ŝ−q↓ D̂q↓


 . (4.1)

Carrying out an additional reduction for a spin-singlet pairing, the interaction Hamiltonian
reads

ĤHL−R = − Jsd

N

∑
p,q,α

Ŝ†
p,α D̂†

−p,−α D̂−q,−α Ŝq,α, (4.2)
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where −α stands for the electron spin projection opposite to α. For comparison, we again
provide the kinetic energy part of the Hamiltonian employing the same notation,

Ĥ′
BH =

∑
p,α




D̂p,α

Ŝp,α

X̂p,α

Ŷp,α




† 


εd − µ 0 tpdsx −tpdsy

0 εs − µ tspsx tspsy

tpdsx tspsx εp − µ −tppsx sy

−tpdsy tspsy −tppsx sy εp − µ







D̂p,α

Ŝp,α

X̂p,α

Ŷp,α


 . (4.3)

Within the s–d model considered, the pairing kernel (3.4) factors into functions depending
only on p or q,

(−Vpq) = 2Jsd Sp DpSq Dq ≡ 2Jsdχpχq. (4.4)

A schematic representation of the Jsd exchange amplitude is given in figure 2. This factorizable
Markowitz–Kadanoff [57] form of the pairing kernel is a direct consequence of the local intra-
atomic character of the s–d exchange in the transition ion. Substituting in equation (3.6)

�p(T ) = �(T )Sp Dp = �(T )χp, (4.5)

one obtains in a closed form, cf [58], a simple BCS equation for the temperature dependence
of the gap,

2Jsd

〈
χ2

p

2Ep

tanh

(
Ep

2kBT

)〉
= 1, (4.6)

where

Ep ≡ (η2
p + �2

p)
1/2 = [(εp − EF)

2 + (�(T )χp)
2]1/2, (4.7)

〈 fp〉 =
∫ 2π

0

∫ 2π

0

d px d py

(2π)2
f (p), (4.8)

EF ≡ µ. We wish to mention that separability of the order parameter (4.5) has been derived
by Pokrovsky [59] in the general weak-coupling case and not only for factorizable pairing
kernels.

According to (2.4) we have

χp ≡ Sp Dp = 4εptsptpd(x − y)[εsε
2
p − 4εpt2

sp(x + y) + 32tppτ
2
spxy]

× {[4εptsptpd(x − y)]2 + [εsε
2
p − 4εpt2

sp(x + y) + 32tppτ
2
spxy]2

+ 4x[(εsεp − 8τ 2
sp y)tpd]2 + 4y[(εsεp − 8τ 2

spx)tpd]2}−1. (4.9)

The gap symmetry is then easily made obvious in the narrow-band approximation. Formally,
it is the asymptotic behaviour of the eigenvector (2.4) for vanishing hopping integrals t → 0.
In this limit case [27], we have ε3,p ≈ εd, and

�̃3,p =



D3,p

S3,p

X3,p

Y3,p


 ≈




1
−(tsptpd/εsεp)(s2

x − s2
y)

(tpd/εp)sx

(tpd/εp)sy


 . (4.10)

Clearly, D3,p exhibits A1g symmetry, while S3,p has the B1g symmetry, whence the product
S3,p D3,p ∝ cos px − cos py ‘inherits’ the B1g symmetry, figure 3(b), which is conserved even
for realistic values of the hopping integrals, and from (4.5) it follows that

�p ∝ S3,p D3,p ≈ 2tsptpd

(EF − εs)(EF − εp)
(cos px − cos py). (4.11)

As can be seen in figure 3(c) this small-t approximation fits the ARPES data for the gap
anisotropy quite well. Similar experimental data have been previously reported, e.g., in [63].
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Figure 2. Pairing two-electron exchange amplitude Jsd ‘hidden’ in the Cu atom. (a) Classical
Bohr–Sommerfeld representation of the s–d two-electron exchange process. The inset shows how
the Coulomb scattering leads to an effective electron spin exchange. (b) Electron charge distribution
for Cu 4s and Cu 3d orbitals: the dashed line marks the Cu–O distance in the CuO2 plane.

Note, additionally, that close to the (π, π)-point, where (px −π)2 +(py −π)2 � 1, the angular
dependence of the gap can be written in the form

�p ∝ cos px − cos py ≈ [(px − π)2 + (py − π)2] cos 2φ, tan φ = py − π

px − π
. (4.12)

The d-type angular dependence of both the gap anisotropy and the separable pairing
kernel is often postulated in phenomenological model Hamiltonians to describe high-Tc

superconductivity. The previous discussion thus provides a microscopic justification based
on the fundamental exchange amplitudes. For the oxygen scenario [27, 64], in which the
Fermi level falls in a nonbonding oxygen band, ε2,p ≈ εp and t → 0 [20], the gap function
has different or additional nodes along the Fermi contour,


D2,p

S2,p

X2,p

Y2,p


 ≈ 1√

s2
x + s2

y




−2(tpd/εd)sx sy

2tsp(tppεd + 2t2
pd)(εdt2

sp + εst2
pd)

−1sx sy(s2
x − s2

y)

−sy

sx


 . (4.13)

Here D2,p and S2,p exhibit B2g and A2g symmetries, respectively. Let us also mention that
the s-vector components, equation (2.3), constitute the arguments of the basis functions of the
symmetry representations.

Employing the analytical expression (2.8) for the constant-energy contours (CECs), one
can implement an efficient numerical integration,∫ 2π

0
d px

∫ 2π

0
d py f (εp) =

∫ εt

εb

dε

∮
d pl

vp

f (ε), (4.14)

where

vp =
∣∣∣∣∂εp

∂p

∣∣∣∣ = [(Ay + B)2x(1 − x) + (Ax + B)2 y(1 − y)]1/2

|A′xy + B′(x + y) + C ′| , (4.15)
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Figure 3. Electronic properties of the superconducting CuO2 plane. (a) Conduction band energy
εp as a function of the quasimomentum p. The red contour corresponding to the Fermi energy,
εp = EF, is in excellent agreement with the ARPES data [60]. (b) Quasiparticle velocity vp as
a function of quasimomentum. The velocity variation along the Fermi contour is less than 10%.
The energy parameters are fitted to be in agreement with the typical ab initio calculations [61].
The significant overestimate disappears if the bandwidth is fitted to the experimental data, but
the shape is conserved. (c) Momentum dependence of the gap-anisotropy function χp within the
s–d model. The functional values along the Fermi contour are indicated by a green line. (d)
Superconducting gap at zero temperature �p (green line) according to our analytical result (4.5),
plotted along the Fermi contour (red line). The ARPES data [62] for BSCCO are given as prisms
with sizes corresponding to the experimental error bars. The gap function along the Fermi contour
has the same qualitative behaviour and symmetry as the Cu 3dx2−y2 electron wavefunction along
the circular orbit sketched in figure 1(a).

with A′, B′ and C ′ being the energy derivatives of the polynomials (2.9),

A′(ε) = 16[2t2
sptpp − 2t2

pdtpp − t2
pp(εd + εs)],

B′(ε) = −4(t2
spεd + t2

pdεs) − 4εp(t
2
sp + t2

pd),

C ′(ε) = εsε
2
p + εdε

2
p + 2εdεsεp.

(4.16)

Using these functions, the band spectrum, see (2.8), can be obtained by Newton iterations

ε[i]
p = ε[i−1]

p − Axy + B(x + y) + C
A′xy + B′(x + y) + C ′ (4.17)

with initial approximation for the conduction band ε
[0]
3,p = εd .

The charge carrier velocity is vpa0/h̄, a0 is the lattice constant, pl the dimensionless
momentum component along the CEC and εb and εt are the bottom and the top of the conduction
band, respectively, εb � εp � εt . The canonic equation for the CEC (2.8),

A cos px cos py − (A + 2B)(cos px + cos py) + A + 4C = 0, (4.18)
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can be cast in an explicit form

py,1(px) = 2 arcsin

√
− Bx + C
Ax + B

, py,2(px) = 2π − py,1(px), (4.19)

and for the length element d pl we obtain

d pl =
√

1 +

(
d py

d px

)2

d px,

(
d py

d px

)2

= x(1 − x)

y(1 − y)

(
Ay + B
Ax + B

)2

. (4.20)

The contour integration along the hole pocket εp = const centred at the (π, π) point only
needs to be performed over one-eighth of the CEC∮

d pl f (px, py) = 8
∫ π

pd

f (px, py(px))

(
d pd(px)

d px

)
d px, (4.21)

where

xd = sin2

(
pd

2

)
, Ax2

d + 2Bxd + C = 0. (4.22)

5. Antiferromagnetic character of Jsd

Let us address now the atomic physics underlying the s–d pairing mechanism. Within the
framework of the Hartree–Fock (HF) theory the exchange energy is given [65] as an integral
of the Cu 4s and Cu 3dx2−y2 atomic wavefunctions,

−J (HF)

sd =
∫ ∫

ψ∗
s (r1)ψ

∗
d (r2)

e2

|r1 − r2|ψd(r1)ψs(r2) dr1 dr2, (5.1)

and its sign corresponds to repulsion and depairing for singlet Cooper pairs. Thus, one can
formulate the following conceptual problem, emerging in fundamental physics:

(1) is it possible, as in the case of a covalent bond, for two-electron correlations to trigger a
change of the sign of the exchange amplitude?

(2) how can one adapt the HL idea to a transition ion perturbed by ligands?

There is no doubt that the solution to this problem will illuminate other problems in the physics
of magnetism as well. In brief, the enigma can be stated as to whether the HL approximation
for the exchange energy may result in Jsd > 0, cf [65]. Let us recall that as early as 1962
Herring [43] was advocating that ‘antiferromagnetic Ji j ’s should be the rule, ferromagnetic
Ji j ’s the exception’. For the present, we can adopt the s–d model as a convenient microscopic
phenomenology of superconductivity in the CuO2 plane. On the other hand, the exchange
amplitude Jsd is an important ingredient in the physics of magnetism as well.

The physics of magnetism certainly displays lots of subtleties, but for a qualitative
comparison let us trace the ‘operation’ of the s–d exchange amplitude Jsd in the case of
the simplest model for a ferromagnetic metal. While for the CuO2 plane the s band is empty,
for transition metals it is the widest conduction band. The width of the d band is significantly
smaller and thus, making a caricature of the ferromagnetic metals, we completely neglect the
width of the d band. In this ‘heavy-fermion’ approximation the d electrons are considered as
localized, and without significant energy loss they can be completely spin polarized, 〈n̂d↑〉 ≈ 1,
〈Ŝd,z〉 ≈ 1

2 > 0. In this case the self-consistent approximation applied to (2.17) gives

2Ŝd · Ŝs ≈ Ŝd,z(n̂s↑ − n̂s↓) ≈ 〈Ŝd,z〉(ns↑ − ns↓). (5.2)
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Here nsα ≡ 〈n̂sα〉 denotes the average number of s electrons per atom with spin projection
α. In order to calculate these variables one has to take into account the different filling of the
s bands with different polarizations, and sum over the quasimomenta. Finally, the exchange
energy per atom reads

EX = − 1
2 Jsd(ns↓ − ns↑) < 0. (5.3)

In the CuO2 plane, positive values of the Jsd parameter lead to singlet superconductivity. For
ferromagnetic metals, positive values of Jsd correspond to polarization of the s band opposite
to d-state polarization, ns↓ − ns↑ > 0. Thereby, ferromagnetism could be brought about by
an exchange amplitude with a sign corresponding to antiparallel spin polarization of s and d
orbitals, cf figure 4–15 of [50]. Thus the same sign of the s–d exchange amplitude Jsd can be
at the origin of ferromagnetism, e.g., in Fe and Ni, and superconductivity in the CuO2 plane.
This is perhaps the simplest scenario for cuprate superconductivity based on the two-electron
exchange processes.

According to a naive interpretation of Hund’s rule the Kondo effect should not exist. In
the epoch-making paper [66] on the resistance minimum in dilute magnetic alloys Kondo
concluded that in the s–d exchange model, due to Zener [18], Kasuya and Yosida [67], the sign
of the direct exchange amplitude Jsd must be antiferromagnetic. And vice versa, the minimum
disappears if Jsd is ferromagnetic. Such minimum exists for many magnetic metals and alloys
and is another hint in favour of Herring’s argument [43] mentioned earlier. In his analysis
Kondo speculates that Jsd is a parameter whose sign and magnitude have to be determined so
as to fit the experiment, and concluded that antiferromagnetic values of the order of electron
volts are quite reasonable. For a review on the Kondo problem we refer the reader to [68].

On the other hand, every textbook on atomic physics tells us that parallel electron spins and
an antisymmetric wavefunction minimize the electrostatic energy. Put differently, the tendency
toward ferromagnetism in Hund’s rule is of electrostatic origin. As Kondo has pointed out [66],
the problem is to find the origin of an antiferromagnetic Jsd, or how to overcome the strong
electrostatic repulsion. It is very plausible that it is not a single driving force, but instead one
has to take into account several interfering electron scattering amplitudes.

5.1. Intra-atomic correlations

The self-consistent approximation has been known in celestial mechanics for ages.
Accordingly, the motion of a planet is averaged over its orbit. One then has to calculate
the potential created by this orbital-averaged motion and perform a sum over all particles.
Where does this scheme fail? It fails in the case of a resonance when the periods for some
planets are commensurate or just equal. This is nothing but the case of a transition ion for
which the energies and classical periods are very close. Then the resonant repetitive electron
scattering, symbolically presented in figure 2, leads to strong electron correlations as in the
double Rydberg states of atoms [33]. For double Rydberg states in He it is necessary to solve a
two-electron quantum problem but for other atoms we have to take into account the influence
of the other electrons in some self-consistent approximation, the local density approximation
(LDA), for example. For two 4s electrons the two-electron correlations are so strong that
they have to be taken into account from the very beginning [33]. There is no doubt that the
two-electron correlations between 4s and 3d electrons having almost equal energies cannot
be neglected. In other words, HF theory cannot be used directly. Hence, the Bohr picture
is not merely a historical remark but rather an indispensable ingredient of the contemporary
physics of magnetism: two-electron correlations can be important even in a single atom. We
thus conclude that the two-electron correlations may overrule Hund’s rule for the local s–d
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exchange. Note also that the single-particle orbitals (accessible, e.g., from DFT [46], HF
and Xα methods etc) only form an adequate basis for a subsequent account of electronic
correlations. A first step in this direction will be ab initio calculation of the Jsd.

5.2. Indirect s–d exchange

The antiferromagnetism of the insulating phase of the undoped cuprates is mediated by the
Bloch–Kramers–Anderson indirect exchange [69] between 3d electrons of nearest-neighbour
Cu ions via O 2p electrons. It is unlikely that the numerical value of this Jdd exchange integral
is dramatically changed in the metallic phase obtained by hole doping. In the metallic phase,
however, the same indirect exchange mechanism will operate between 3d and 4s electrons at
the same Cu atom via the 2p electrons of the O ligands. For illustration, let us compare the
indirect s–d exchange amplitude J (ind)

sd with Jdd. There are three important factors: (i) Every
Cu ion has four O ligands, figure 1(a). (ii) The hopping amplitude between 4s and 2p orbitals
is bigger than the 3d–2p transfer. (iii) The Cu on-site Coulomb repulsion between 4s and 3d
electrons Usd is much smaller than the 3d–3d Hubbard repulsion Udd. Taking these factors
into account one can expect that J (ind)

sd is an order of magnitude bigger than Jdd:

J (ind)

sd � 4

(
tsp

tpd

)2 Udd

Usd
Jdd. (5.4)

The relatively small Jdd ensures Néel temperatures TN of the order of room temperature.
Hence, we can conclude that the indirect exchange can contribute significantly to the total Jsd

amplitude responsible for the pairing. However, only very detailed first-principles calculations
can clarify the relative contributions of the direct and the indirect s–d exchange.

5.3. Effect of mixing wavefunctions

In an early paper [70], by analysing the g-shift and the anomalous Hall effect in Gd metal, Kondo
showed that an antiferromagnetic Jsd can result from the effect of mixing the wavefunctions
of conduction and d electrons. We believe that this property is preserved if the d electrons also
form a conduction band, or even in the case of a single s–p–d hybridized band. We should note
that Kondo’s argumentation for the need of a Jsd with an antiferromagnetic sign in the Kondo
effect is related to Anderson’s consideration of localized magnetic states in metals [71]. In
the latter schematized model, based on the works of Friedel [72], Anderson shows that ‘any
g-shift caused by free-electron polarization will tend to have antiferromagnetic sign.’

As it was expected by various investigators the later numerical calculations confirmed that
the striking features of negative hyperfine field with large amplitude comes mainly from the
contact contribution of the core electrons [73–75]. The antipolarization between the s- and
d electrons in transition metal compounds is also well observed by Mössbauer spectroscopy;
however, the contribution of the core s electrons and conduction band cannot be experimentally
resolved. For the pairing, the amplitude of the s–d Kondo scattering is essential because in
some terminology the CuO2 plane can be considered to be a single-band Kondo lattice, cf [76].

Given the above diversity of channels for s–d exchange it is not surprising that an adequate
first-principles scheme to calculate Jsd is still sought. Furthermore, Jsd is involved in the
theory of magnetism in an entangled way precluding so far a direct relation between ab initio
calculations and formulae fitting the experiment [77].
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6. Dogmatics, discussion, conclusions and perspectives

In a review on the history of studies of superconductivity and the prospects for further research
in the field Ginzburg [2] conditionally divided the history into several periods.

(i) The ‘day before yesterday’ (1911–1941). This period starts with the discovery of
superconductivity in Leiden by Gilles Holst and Heike Kamerlingh Onnes [2, 78].

(ii) ‘Yesterday’ (1942–1986). This period embraces the appearance of the �–� theories and
the first significant technical applications.

(iii) ‘Today’ (1987–?). This epoch emerged with the discovery of the high-Tc cuprates [1].
(iv) ‘Tomorrow’ (?). The final landmark of ‘today’ must be some event.

Long ago, in the ‘day before yesterday’, high-Tc superconductivity was known as a ‘blue
dream’ of physicists. Considerable theoretical efforts were applied ‘yesterday’, attempting to
predict possible realizations of this phenomenon [79]. At that time the problem of high-Tc

superconductivity was ‘one of the most interesting and attractive problems from the purely
scientific point of view’ [79]. Intriguingly, the special role of layered metallic systems and
almost two-dimensional superconductivity [80] was mentioned as early as this epoch, and a big
variety of mechanisms of superconductivity were considered including s–d exchange [81, 82].
This exchange process has been well known in the physics of magnetism since the dawn of
quantum mechanics. Thus it is not surprising that the first work on the s–d pairing mechanism,
by Akhiezer and Pomeranchuk [81], was accomplished about a year after the celebrated BCS
paper [3]. These pioneering works, however, ‘have been ignored thus far’ [83].

After the work of Bednorz and Müller [1] the problem of high-Tc superconductivity soon
came into fashion. ‘After experiencing the “smell of roast meat”, yesterday skeptics or even
critics can become zealous advocates of a new direction of endeavor. But this is another story—
more in the realm of psychology and sociology than scientific and technical activity’ [84]. All
models of high-Tc superconductivity were revisited in great detail in the uncountable number
of papers that have appeared in the epoch ‘today’.

6.1. Aesthetics and frustrations of the central dogmas

The common trends of some new theoretical models for cuprate superconductivity were
systematized by Anderson [85] in six dogmas. We find it very instructive to compare our
theory of high-Tc superconductivity with these dogmas.

‘Dogma I: All the relevant carriers of both spin and electricity reside in the CuO2 plane
and derive from the hybridized O 2p–Cu 3dx2−y2 orbital which dominates the binding in these
compounds. . . . in summary look at the planes only (a great and welcome simplification)’.

The key ingredient of our pairing theory is the four-fermion s–d interaction between the
Cu 4s and Cu 3dx2−y2 orbitals. If we cut the Cu 4s orbital off from the Hilbert space of the
CuO2 plane such a pairing interaction cannot exist. Although Cu 4s is an empty band, it is
an important component of the theory of high-Tc superconductivity. The O 2p orbitals are
the intermediaries between the Cu 4s and Cu 3dx2−y2 orbitals that create the necessary s–d
hybridization of the conduction Cu 3dx2−y2 band.

‘Dogma II: Magnetism and high-Tc superconductivity are closely related, in a very
specific sense: i.e., the electrons which exhibit magnetism are the same as the charge carriers.
. . . We must solve the old problem of doping of a single Mott–Hubbard band before we can
begin the problem of high-Tc.’

The incommensurate spin-density waves (SDWs) observed in the superconducting
phase of La2CuO4.11 and La1.88Sr0.12O4 by neutron scattering [86] and muon spin
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relaxation [87], respectively, demonstrated that antiferromagnetism of the Cu site is innocuous
for superconductivity in the cuprates. These antiferromagnetic correlations are not depairing
and do not significantly change Tc and the electronic structure of the CuO2 plane. The
observed correspondence between the magnetic and the superconducting order parameters
is an additional hint that both phenomena have a common origin [88]; see also the detailed
theoretical works [89]. Nevertheless the coexistence of SDW and superconductivity with
a common critical temperature cannot be clearly observed in every high-Tc cuprate. As a
result, superconductivity can be considered, at least in a first approximation, separately from a
possible antiferromagnetism as is done in the present paper. In Cr metal the amplitude of the
SDW shows also a BCS-like temperature dependence [90] and the SDW theory is based on the
conventional theory of metals based in turn on the Landau Fermi-liquid theory. We consider
the quasiparticle picture as a reliable starting point for the theory of high-Tc cuprates as well.

‘Dogma III: The dominant interactions are repulsive and their energy scales are all large.
. . . Restrict your attention to a single band, repulsive (not too big) U Hubbard model.’

Indeed, the dominant interactions are repulsive—‘Nobody has abrogated the Coulomb
law’, as Landau used to emphasize [2]. However, something subtle occurs when the atomic
orbitals are analysed. The strong electron repulsion leads to HL-type correlations: two
electrons cannot simultaneously occupy the same orbital, even if they have opposite spins.
The exchange of electrons between two orbitals decreases the electron kinetic energy and
thereby the total energy of the whole system. In molecular physics, according to the Hellmann–
Feynman theorem such a decrease in energy drives an inter-atomic attraction for large inter-
atomic distances. Thus, the valence attraction is the final result of the dominant Coulomb
repulsion between electrons. In this way the HL-type exchange between itinerant electrons
gives rise to electron-electron attraction and conventional Cooper pairing. The s–d exchange,
‘residing’ in the Cu atom, can be considered as an ‘intra-atomic-valence bond’—an attraction-
sign scattering amplitude due to the Coulomb repulsion between the correlated electrons. The
s–d exchange in the transition ions is one of the most intensive exchange processes in solid
state physics. Such a high-frequency process is described by the exchange amplitude Jsd in
the lattice models for the electronic structure and its sign is determined by the inter-electronic
Coulomb repulsion. The HL interaction is a result of strong electron repulsion and survives
even for infinite Hubbard U. This interaction is lost when starting with the infinite-U Hubbard
model, however. Thus, not a single-band Hubbard model but a single-band s–d model with
antiferromagnetic exchange amplitude is the adequate starting point for a realistic treatment
of CuO2 superconductivity.

‘Dogma IV: The ‘normal’ metal above Tc . . . is not a Fermi liquid . . . but retains a Fermi
surface satisfying Luttinger’s theorem at least in the highest-Tc materials. We call this a
Luttinger Liquid.’

Very recently, the crucial experiment was finally conducted. After 15 years of intensive
investigations of the cuprates it is now experimentally established [91] that the overdoped
cuprates obey the 150 year old Wiedemann–Franz law within a remarkable 1% accuracy.
After this experimental clarification the theoretical comprehension will hardly keep us waiting
long. This experiment has also solved the old problem of the nature of charge carriers created
by doping of a single Mott–Hubbard band, cf dogma II. Now we know that charge carriers
of the normal state are standard Landau quasiparticles [92] for which we have conventional
Cooper pairing in the superconducting phase. ‘Holons’, ‘spinons’ and spin–charge separation
are unlikely to occur and behave so as to emulate the properties of the ideal Fermi gas. As a
function of the hole doping per Cu atom, p̃, the critical temperature is a smooth parabola,

Tc/T max
c ≈ 1 − 82.6( p̃ − 0.16)2. (6.1)
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Thus, it is improbable that the nature of the carriers and pairing mechanism can be dramatically
changed in the optimal and underdoped regimes although a number of new and interesting
phenomena complicate the physics of the underdoped cuprates.

In short, in our opinion the experimental validation of the Wiedemann–Franz law in
overdoped cuprates [91] is a triumph of the Landau [92] and Migdal concept of Fermi
quasiparticles (and Landau spirit of trivialism in general) and provides a refutation of the
spin–charge separation in cuprates [93]. Hence, the problem of deriving the Wiedemann–
Franz law for strongly correlated electrons in the CuO2 plane has just been set in the agenda.
According to the Fermi liquid theory [94] interactions between the particles create an effective
self-consistent Hamiltonian. As Kadanoff [95] has pointed out, this idea was much developed
by Landau [96] and Anderson [97]. Unfortunately, for high-Tc cuprates a link is still missing
between the Landau quasiparticle concept and the one due to Slater that even scattering matrix
elements can be calculated from first principles.

‘Dogma V: Nonetheless, enough directions have been probed to indicate strongly that
this odd–even splitting of CuO2 planar states does not exist. . . . The impact of Dogma V,
then, is that the two-dimensional state has separation of charge and spin into excitations which
are meaningful only within their two-dimensional substrate; to hop coherently as an electron
to another plane is not possible, since the electron is a composite object, not an elementary
excitation.’

Within the single-particle approximation (section 2) the bilayer band splitting is readily
obtained from (2.8) and (4.19) by the replacements

εi → εi ± t⊥,ii , i = s, p, d, (6.2)

where t⊥,ii is the hopping amplitude between the i th orbitals in the adjacent CuO2 planes. In
other words, the two constant energy curves due to the bilayer splitting are described by the
same equation (2.8). Since it is plausible that t⊥,ss dominates, from (4.10) one finds

�Ebilayer ≈ 2t⊥,ss|S3,p|2 ≈ 22 meV (cos px − cos py)
2, (6.3)

in agreement with [61, 98]. The numerical value of 22 meV has been reported for heavily
overdoped Bi2Sr2CaCu2O8+δ (BSCCO) [98]. This experiment, crucial for dogma V, cf [99],
is another piece of evidence in favour of the conventional behaviour of the electron excitations
in the (CuO2)2 slab. Since �Ebilayer is relatively small in comparison with the width of
the conduction band, it is another hint that even for bilayer superconductors like BSCCO
and YBa2Cu3O7−δ (YBCO) the analysis of a single CuO2 plane is an acceptable initial
approximation.

‘Dogma VI: Interlayer hopping together with the ‘confinement’ of Dogma V is either the
mechanism of or at least a major contributor to superconducting condensation energy.’

The interlayer hopping which is understood as a single-electron process definitely cannot
be considered as a two-electron pairing interaction creating the condensation energy. It
is only one of the details when one concentrates on the material-specific effects in high-
Tc superconductors. The inter-slab hopping between double (CuO2)2 layers is a coherent
Josephson tunnelling responsible for the long-living plasma oscillations with frequency ωpl <

�. These plasma oscillations along with far-infrared transparency of the superconducting
phase were theoretically predicted [100] for BSCCO—one of the few predictions made for
high-Tc cuprates, cf the postdiction [101]. After the experimental observation [102], the
plasma resonances associated with the Cooper-pair motion soon turned into a broad research
field [103]. Subgap plasmons were predicted [104] for conventional superconducting thin
films as well, and shortly after experimentally confirmed [105] for thin Al films on SrTiO3

substrate. The relatively lagged development of the physics of this effect was partially due
to the false neglect of the longitudinal current response in the classical works on microscopic
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theory. Concluding, let us note that the London penetration depth λ can be considered as the
Compton wavelength of the Higgs boson of mass mHc2 = h̄ωpl, but the overall contribution
of the interlayer hopping to the condensation energy is negligible.

6.2. Discussion

The band structure of the CuO2 plane is now believed to be understood. However, after
15 years of development a mismatch of a factor of two or three between the ab initio and
the experimental spectroscopic estimates for the single-electron hopping amplitudes t , or the
bandwidth, tends to be interpreted rather as a state-of-the-art ‘coincidence’. The HL approach
is well known in quantum chemistry [106, 107], and has been successfully used for a long time
in the physics of magnetism [108]. We hope that realistic first-principles calculations aiming
at the exchange integrals J of the CuO2 plane can be easily carried out. Should they validate
the correct (antiferromagnetic) sign and the correct order of magnitude of Jsd, we can consider
the theory of high-Tc superconductivity established. We stress that the two-electron exchange,
analysed here, is completely different from the double exchange considered in [109].

In order to compare the derived results with the experiment, it is necessary that the tight-
binding conduction band energy be fitted to the available ARPES data. In doing so a few
parameters have to be properly taken into account: the Fermi energy EF, as determined from
the total area of the hole Fermi contour, the difference between the Fermi energy and the
Van Hove singularity, EF − ε(π, 0), and the difference between the Van Hove singular point
and the bottom of the conduction band at the � point, ε(π, 0) − ε(0, 0). The fit may further
allow us to take into account a possible realization of the Abrikosov–Falkovsky scenario,
cf [27]. According to the latter, for εd < εp < εs and sufficiently small tpd, the conduction
band can be the narrow (nonbonding) oxygen band having a perfect (within the framework
of the four-band model) extended Van Hove singularity. If the superconducting gap has a
B1g-type symmetry, its maximum value along the Fermi contour, �max = max |�p(T = 0)|,
determines the Jsd exchange integral in the s–d model. Thus, the temperature dependence of
the gap, described by the function �(T ), and the overall thermodynamic behaviour and low
frequency electrodynamic response will be determined without free fitting parameters.

The derived gap anisotropy function (4.9) and its interpolation (4.11) compared to the
ARPES experiment showed that the ‘standard’ four-band model, spanned on the Cu 3dx2−y2 ,
Cu 4s, O 2px and O 2py orbitals, with an antiferromagnetic s–d pairing interaction, successfully
describes the main features of the ARPES data: the rounded-square-shaped Fermi surface,
small energy dispersion along the (0, 0)–(2π, 0) line and d-type (B1g) symmetry of the
energy gap �p along the Fermi contour. According to the pairing scenario proposed here,
strong electron correlations ‘drive’ the electron exchange amplitudes. These inter- and intra-
atomic processes occur on energy scales unusually large for solid state physics. However,
the subsequent treatment of the lattice Hamiltonian can be performed completely within the
framework of the traditional BCS theory. The criterion for applicability of the BCS scheme is
not given by the J versus t , but rather by the Tc versus EF −εb relation. Taking into account the
typical ARPES-derived bandwidths, which are much bigger than Tc, we come to the conclusion
that the BCS trial wavefunction [110] is applicable for the description of superconductivity
in the layered cuprates with an acceptable accuracy if Tc does not significantly exceed room
temperature.

It is worth also adding a few remarks on the normal properties of the layered cuprates.
All these compounds are strongly anisotropic and two-dimensional models give a reasonable
starting point to analyse the related electronic processes. Most importantly, the picture of a
layered metal brings in something qualitatively new which does not exist for a bulk metal—
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the ‘interstitial’ electric field between the layers, like the one in any plane capacitor. The
thermodynamic fluctuations of this electric field and related fluctuations of the electric potential
and charge density constitute an intensive scattering mechanism analogous to the blue-sky
mechanism of light scattering by density fluctuations. It has recently been demonstrated [111]
that the experimentally observed linear resistance can be rationalized in terms of the plane
capacitor scenario; density fluctuations in the layered conductors are more important than
the nature of the interaction. In such a way the linear normal-state resistivity is an intrinsic
property [111] of the ‘layered’ electron gas and cannot be used as an argument in favour of
non-Fermi-liquid behaviour. The resistance of the normal phase may not be directly related to
the pairing mechanism and these problems can be solved separately. Nevertheless it will be
interesting to check whether the anisotropic scattering in cuprates [112, 113] can be explained
within the framework of the s–d pairing Hamiltonian.

The proposed mechanism for pairing in the CuO2 plane can be handled much like an
‘Alice in Wonderland’ toy model, but we find it fascinating that all ingredients of our theory are
achievements of quantum mechanics dating back to the memorable 1920s, currently described
in every physical textbook, and constituting the fundamentals of solid state physics [114, 115].
It would be worthwhile to attempt to apply the approach used in this paper for modelling triplet
and heavy-fermion superconductivity as well.

6.3. Conclusions: the reason for the success of the CuO2 plane

We find it very instructive to analyse qualitatively the reasons for the success of the realization
of high-Tc superconductivity in the CuO2 plane.

(i) Because of the relatively narrow quasi-two-dimensional conduction d band, due to p–d
hybridization, the density of states is rather high. The wide s band resulting from s–p
hybridization is completely empty, which is somewhat unusual for compounds containing
transition ions.

(ii) The pairing s–d exchange process has been known since the first years of quantum physics.
It is omnipresent in the physics of the transition ions but in order for it to become the pairing
mechanism in perovskites it is necessary that the s and d levels be close. In other words,
a virtual population of the s level is at least needed in order to make the Jsd amplitude
operative. Indeed, the conduction d band is, actually, a result of the s–p–d hybridization
in the two-dimensional CuO2 plane.

With the above remarks, one can speculate that among the perovskites the layered ones
are more favourable for achieving higher Tc. The transition ion series ends with Cu2+ and the
Cu 3dx2−y2 and 4s levels are too close. One should keep in mind that the filling of the electron
shells finishes with a ‘robbery’ in Cu [50]: 3d104s1 instead of 3d94s2 as one could expect from
the electron configuration of the Ni atom (3d84s2). However, the energy difference between
these two Cu shell configurations is very small.

Another favourable factor is the proximity of the O 2p and Cu 3dx2−y2 levels. Thus, post
factum the success of Cu and O looks quite deterministic: the CuO2 plane is a tool to realize
a narrow d band with a strong s–p–d hybridization. It was mentioned earlier that Jsd is one
of the largest exchange amplitudes, but the 4s and 3d orbitals are orthogonal and necessarily
require an intermediary whose role is played by the O 2p orbital. Hence this theory can be
nicknamed ‘the 3d-to-4s-by-2p highway to superconductivity’ [17].

How this qualitative picture can be employed to predict new superconducting compounds
is difficult to assess immediately. We believe, however, that this picture, working well for the
overdoped regime, is robust enough against the inclusion of all the accessories inherent to the
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physics of optimally doped and underdoped cuprates: cohabitation of superconductivity and
magnetism [88], stripes [116], pseudo-gap [117], interplay of magnetism and superconductivity
at individual impurity atoms [118], apex oxygen, CuO2 plane dimpling, doping in chains [119],
the 41 meV resonance [120] etc. Perhaps some of these ingredients can be used in the analysis of
triplet superconductivity in the copper-free layered perovskite Sr2RuO4 [121]. It is also likely
that the superconductivity of the RuO2 plane is a manifestation of a ferromagnetic exchange
integral J . The two-electron exchange mediates superconductivity and magnetism in heavy-
fermion compounds [122] as well. We suppose that lattice models similar to the approach here
will be of use in revealing the electronic processes in these interesting materials. Two-electron
exchange may even contribute to the 30 K Tc of the cubic perovskite Ba0.6K0.4BiO3, but so
far it is difficult to separate the exchange contribution from the phonon part of the pairing
interaction. However, the strange doping behaviour of Tl2Ba2CuO6±δ in comparison with
YBCO requires more detailed investigation [10].

6.4. Perspectives: if ‘tomorrow’ comes . . .

The technological success in preparing the second generation of high-Tc superconducting
cables by depositing thin-layer superconducting ceramics on a flexible low-cost metallic
substrate is crucial for future energy applications. The USA Department of Energy suggests
global superconducting energy products would command an annual market of 30 G$ by about
2020. High-Tc superconductor power cables, transformers, motors and generators could grab a
50% market share by 2013,2015, 2016 and 2021, respectively [123]. On the other hand atomic-
layer engineering of superconducting oxides will trigger progress in materials science and
electronics. One can envision multi-functional all-oxide electronics, e.g., sensors, processing
and memory devices, all monolithically integrated within a single chip [124]. In spite of the
technological progress and tens of thousands of publications the theoretical ‘picture in early
2000 remains fairly cloudy on the whole’ [2]. The landmark of ‘today’ must be some event.
‘What event will it be? It is desirable that this landmark be the insight into the mechanism of
superconductivity in high-Tc cuprates’ [2].

In this paper we have presented a traditional theory for superconductivity in overdoped,
and possibly also optimally doped,cuprates. All of its ingredients can be found in the textbooks
and there is a considerable chance that we witness the victory of traditionalism, as it was in
the history of quantum electrodynamics (QED) half a century ago, but it may well be just a
personal viewpoint ‘brainwashed by Feynman’ [125]. Nonetheless, let us use the example
of QED to illustrate the essence of our contribution. QED appeared as a synthesis between
perturbation theory and relativity. Both components had been known well before the QED
conception. Similarly, both the BCS theory and the exchange interaction have been known
for ages, so the point in the agenda was how to conceive out of them the theory of high-Tc

cuprates. Such a theory contains necessarily a big number of energy parameters (EF, εs, εp,
εd, tsp, tpp, tpd, Jsd, Jpd, Jsp and Jpp) which are difficult to determine simultaneously4 (for the
current status of the problem see for example [126]). The first step will definitely be to use
ARPES data in which the spectrum is clearly seen and to neglect in a first approximation the
‘irrelevant’ inter-atomic exchange integrals Jpd, Jsp and Jpp. In this case, for a known normal
spectrum one can determine Jsd from Tc or from the maximum gap at T = 0.

4 The gap-anisotropy fit in figure 3(d) is quite robust against the choice of the parameters. To illustrate and emphasize
the capability of the model we have used, for example, unrealistically big values of the hopping integrals: εd = 0,
εs = 5, εp = −0.9, tpd = 1.13, tsp = 1.63 and tpp = 0.2 eV. This set of parameters corresponds to band calculations
but gives a two to three times wider conduction band. If the band is fitted to the ARPES data Jsd can be less than 1 eV.
A realistic fit is deemed to be a subject of a collaboration with experimentalists.
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A crucial ‘meeting point’ between theory and experiment is the Ginzburg–Landau (GL)
theory. The general form of the GL coefficients for anisotropic-gap superconductors, including
the effect of disorder, is given in [127] and is directly applicable to the present model. For
the s–d separable kernel (4.4) the specific heat C(T ) in the clean limit can also be explicitly
derived [128] and has the GL form C(T ) = CN + C�, with

CN(T ) = π2

3
〈qc(νp)〉,

C�(T ) = kBT
α2

b
= 4π2

7ζ(3)

〈χ2
pqa(νp)〉2

〈χ4
pqb(νp)〉 θ(Tc − T ),

(6.4)

where νp = Ep

2kB T , and

α(T ) = 1

2(kBT )2
〈χ2

pqa(νp)〉, b(T ) = 7ζ(3)

16π2(kBT )3
〈χ4

pqb(νp)〉,

qa(ν) = 1

2 cosh2 ν
, qb(ν) = π2

14ζ(3)

1

ν2

(
tanh ν

ν
− 1

cosh2 ν

)
,

qc(ν) = 6

π2

ν2

cosh2 ν
.

(6.5)

Accordingly, the jump of the specific heat at Tc is expressed by the GL coefficients α and
b, �C = kBTcα

2(Tc)/b(Tc). With the help of the general equations (6.5) one can further
determine the influence of the Van Hove singularity on the thermodynamic and electrodynamic
behaviour. For �C the effect of the Van Hove singularity is reported in [129], and for a
general review on the Van Hove scenario of high-Tc superconductivity we refer the reader
to [130]. When the Fermi level is not close to the Van Hove singularity the GL coefficients can
be worked out as integrals over the Fermi surface; methodological details are given in [131].
Knowledge of the GL coefficients is also fundamental for the physics of fluctuation phenomena
in superconductors [132].

Furthermore, a microscopic consideration of the London penetration depth λ for screening
currents in the CuO2 plane gives [133]

1

λ2(T )
= e2

ε0c2h̄2deff

∮
vprd(νp)

d pl

(2π)2
,

rd(ν) = ν2
∞∑

n=0

[ν2 + π2(n + 1/2)2]−3/2,

(6.6)

where the integration is performed along the Fermi contour. The penetration depth (6.6) is
involved in the Bernoulli effect in superconductors [134]:

�ϕ

RH
= − e2

2ε0c2
λ2(T ) j 2,

1

RH
= 2|e|

a2
0deff

∮
py(px)

d px

(2π)2
, (6.7)

where �ϕ is the change of the electric potential induced by a current density j and 1/RH = entot

is the volume charge density of the charge carriers, with deff the effective spacing between the
CuO2 planes.

For given penetration depth extrapolated to zero temperature, λ(0), and Hall constant of
the superconducting phase, one can easily determine the effective mass of the Cooper pairs

m∗ = e∗λ2(0)

ε0c2RH
, |e∗| = 2|e|. (6.8)

This important material parameter m∗ is experimentally accessible from the electrostatic
modulation of the kinetic inductance of thin superconducting films [135] as well as from
the surface Hall effect [136].
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Having a big variety of calculated variables, the parameters of the theory can be reliably
fitted. Another research direction is the first-principles calculation of the transfer amplitudes
and two-electron exchange integrals. The level of agreement with the fitted values will be
indicative of the completeness of our understanding. In addressing more realistic problems,
the properties of a single space-homogeneous CuO2 plane will be a reasonable starting point.
Concluding, we believe that there is a true perspective for the theoretical physics of cuprate
superconductors to become an important ingredient of their materials science.

Magnetism and superconductivity are among the most important collective phenomena
in condensed matter physics. And, remarkably, magnetism of transition metals and high-
Tc superconductivity of cuprates seem to be two faces of the same ubiquitous two-electron
exchange amplitude.

Acknowledgments

This work was supported by the Flemish GOA. This work is dedicated in memoriam to our
colleague and friend A V Groshev, who was an enthusiastic collaborator in the early stages of
this years-long endeavour. TMM is much indebted to T Sariisky for the stimulating discussions
in the course of the pre-cuprate era seminars on the problem of high-Tc superconductivity held
in Sofia in the early 1980s. TMM is grateful to D Damianov for partial financial support. The
realization of this work would have been impossible without the cooperation of V Mishonova
over many years. We are also indebted to Professor M Mateev for his continuous support
during this long research and to Professor B Bioltchev for the support in the final stages of
this project. It is a pleasure to acknowledge extensive comments and correspondence by (in
chronological order) P B Littlewood, J Zaanen, C Di Castro, N M Plakida, J M J van Leeuwen,
J de Jongh, P-G de Gennes, S Sachdev, Ph Nozières, C M Varma, V L Pokrovsky, P Wiegmann,
B L Altschuler, A Varlamov, A Rigamonti, F Borsa, F H Read, M Mateev, P Brovetto, M Sigrist,
J Bouvier, D Damianov, L P Pitaevskii, J Friedel, J Bok, M Mishonov, D Markowitz and
L P Kadanoff.

Note added in proof. A short discussion on new works on the Kondo effect, Kadowaki-Woods ratio, three-dimensional
Fermi surface and isotope effect in cuprates will be given in the cond-mat version of the present paper [137].

References

[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189–93
Bednorz J G and Müller K A 1988 Rev. Mod. Phys. 60 585–600

[2] Ginzburg V L 2000 J. Supercond.: Incorp. Novel Magn. 13 665–77
[3] Cooper L N 1956 Phys. Rev. 104 1189–90

Bardeen J, Cooper L N and Schrieffer J 1957 Phys. Rev. 106 162–4
Bardeen J, Cooper L N and Schrieffer J 1957 Phys. Rev. 108 1175–204

[4] Aebi P 2001 Fermi surface mapping by angle-scanned photoemission High-Tc Superconductors and Related
Materials: Materials Science, Fundamental Properties, and Some Future Electronic Applications
ed S-L Drechsler and T M Mishonov (Dordrecht: Kluwer) pp 39–50

[5] Campuzano J C, Norman M R and Randeria M 2002 Photoemission in the high-Tc superconductors The Physics
of Superconductors vol 2, ed K-H Bennemann and J P Ketterson (Heidelberg: Springer) at press

Campuzano J C, Norman M R and Randeria M 2002 Preprint cond-mat/0209476
[6] Scalapino D J 1995 Phys. Rep. 250 329–67

Poilblanc D and Scalapino D 2002 Calculation of �(k, ω) for a 2D t–J cluster Preprint cond-mat/0202180
[7] Schrieffer J R 1995 J. Low Temp. Phys. 99 97
[8] Annett J F, Goldenfeld N and Leggett A J 1996 J. Low Temp. Phys. 105 473

Lee P A 1996 J. Low Temp. Phys. 105 581
[9] Koltenbah B E C and Joynt R 1996 Rep. Prog. Phys. 60 23–56

Li Q P, Koltenbah B E C and Joynt R 1993 Phys. Rev. B 48 437
[10] Ruvalds J 1996 Supercond. Sci. Technol. 9 905–26



Superconductivity of overdoped cuprates 4451

[11] Markiewicz R S 1997 J. Phys. Chem. Solids 58 1179–310
[12] Wilson J A 2000 J. Phys.: Condens. Matter 12 R517–47

Wilson J A 2001 J. Phys.: Condens. Matter 13 R945–77
Wilson J A 2003 Preprint cond-mat/0304661

[13] Szotek Z, Györffy B L, Temmerman W M, Andersen O K and Jepsen O 2001 J. Phys.: Condens. Matter 13
8625–52

[14] Chubukov A V, Pines D and Schmalian J 2003 A spin fluctuation model for d-wave superconductivity The
Physics of Superconductors vol 1, ed K-H Bennemann and J B Ketterson (Heidelberg: Springer)

Chubukov A V, Pines D and Schmalian J 2002 Preprint cond-mat/0201140
Plakida N M, Anton L, Adam S and Adam Gh 2001 Exchange and spin-fluctuation pairing in cuprates Preprint

cond-mat/0104234
Plakida N M, Hayn R and Richard J-L 1995 Phys. Rev. B 52 16599
Friedel J and Kohmoto M 2002 Eur. Phys. J. B 30 427–35

[15] Carlson E W, Emery V J, Kivelson S A and Orgad D 2002 Concepts in high-temperature superconductivity
The Physics of Superconductors vol 1, ed K-H Bennemann and J B Ketterson (Heidelberg: Springer)

Carlson E W, Emery V J, Kivelson S A and Orgad D 2002 Preprint cond-mat/0206217
[16] Rigamonti A, Borsa F and Carretta P 1998 Rep. Prog. Phys. 61 1367–439
[17] Mishonov T M, Indekeu J O and Penev E S 2002 The 3d-to-4s-by-2p highway to superconductivity in cuprates

Int. J. Mod. Phys. B 16 4577–85
Mishonov T M, Indekeu J O and Penev E S 2002 Preprint cond-mat/0206350

[18] Schubin S and Wonsowsky S 1934 Proc. R. Soc. A 145 159–80
Vonsovskii S V 1946 Zh. Eksp. Teor. Fiz. 16 980
Zener C 1951 Phys. Rev. 81 440–4
Vonsovskii S V 1974 Magnetism (New York: Wiley)
Vonsovskii S V, Izyumov Yu A and Kurmaev E Z 1982 Superconductivity of Transition Metals, Their Alloys

and Compounds (Berlin: Springer)
Craik D 1995 Magnetism: Principles and Applications (Chichester: Wiley)
Yosida K 1996 Theory of Magnetism (Berlin: Springer) p 181 and p 319
Yosida K 1966 On s–d and s–f interactions Magnetism vol 2 B, ed G T Rado and H Suhl (San Diego, CA:

Academic) pp 215–91
Schubin S P 1991 Selected Papers on Theoretical Physics ed S V Vonsovskii and M I Katsnelson (Ekaterinburg:

Ural Branch RAS) p 375 (in Russian); Schubin died in a camp in 1938; cf. Vizgin V P 1999 The nuclear
shield in the ‘thirty year war’ of physicists against ignorant criticism of modern physical theories Phys. Usp.
42 1259–83

Andreev A F et al 1999 In memory of Sergei Vasil’evich Vonsovskii Sov. Phys.–Usp. 42 101–2
Izumov Yu A 2002 Basic Models in Quantum Theory of Magnetism (Ekaterinburg: Ural Branch RAS)

[19] Heitler W and London F 1927 Z. Phys. 44 445
[20] Mishonov T M, Donkov A A, Koleva R K and Penev E S 1997 Bulg. J. Phys. 24 114–25

Mishonov T M, Donkov A A, Koleva R K and Penev E S 2000 Superconducting gap anisotropy within
the framework of a simple exchange model for layered cuprates. The theory of HTSC Preprint cond-
mat/0001033

[21] Mishonov T M, Groshev A V and Donkov A A 1998 Bulg. J. Phys. 25 62
[22] Mishonov T M, Wallington J P, Penev E S and Indekeu J O 2002 Mod. Phys. Lett. B 16 693
[23] Bloch F 1928 Z. Phys. 72 555
[24] Hückel E 1927 Z. Phys. 70 204

Hückel E 1932 Z. Phys. 76 628
[25] Slater J C 1963 Quantum Theory of Molecules and Solids vol 1 (New York: McGraw-Hill) section 2.3, ch 3

Slater J C 1963 Quantum Theory of Molecules and Solids vol 2 (New York: McGraw-Hill) ch 9
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